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OPTIMAL POLICIES FOR A SEQUENTIAL DECISION
PROCESS*

LAWRENCE BROWN{

1. Introduction. In this paper we discuss a sequential decision process
of a special type. For this process the decision at the nth stage of the proc-
ess concerns which value among a set of possible random variables to re-
cord. The loss (or gain) function of the process is a function of the values
of the random variables actually recorded.

In this broad formulation the process is related to the two-armed bandit
problem posed by Robbins [5] and discussed in [2], [3], [6]. The difference
lies in the amount of information given the observer about the variables
he chooses not to sample. The extra information conveyed in the process
considered in this paper makes possible certain kinds of conclusions which
are not possible in the case of the two-armed bandit.

The process will be described in detail in §2. Briefly, it is as follows. At
each stage of the process, say the nth, the two real valued random variables
X,", X,", are observed. These variables have a fixed joint distribution
(independent of n) belonging to a parametric family of distributions
subject to the assumptions of §2. At each stage, before observing the vari-
ables, the experimenter must choose to record one of them. The choice is
made on the basis of his past observations and his a priori knowledge (if
any) of the distribution of z; , z, . After proceeding in this way for N stages
(N is given in advance) the experimenter receives a payoff which is some
given function of the sum of the recorded variables; the objective of the
experimenter is to maximize the expectation of this payoff.

Subject to the assumptions of the next section, it is shown in Theorem 1
that an optimal decision policy exists. One of these assumptions is an
assumption of symmetry on the a priori parameter distribution. Due to the
finiteness of the group of symmetries the policy of Theorem 1 can easily be
shown to be an optimal invariant policy, subject to the other assumptions
of §2. Under these restrictions it is also the optimal maximin policy.

The method of proof of the main theorem is suggested by the dynamic
programming approach used by Bellman [1]. The sequential decision
process is viewed as a problem in adaptive control. As is the general case
with such problems, it is then fairly easy to describe the process in terms
of a recursion equation. A feature of this problem is that it is possible to
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38 LAWRENCE BROWN

use a modification of this equation to find an optimal policy for the process
without actually computing values from the recursion equation.

2. Formal description of the process. Let #', z2%, - - - , 2» be a sequence
of independent random variables in 2-dimensional Euclidean space E. .
Each random variable z° = (z;%, 2,°) is assumed to have a probability
density p(6, x) with respect to a o-finite measure u on E; . 6 is a parameter,
0€EOCE,.Ift = (x1, 1) is a 2-dimensional vector let the reversal of z,
denoted by Rz, be Rz = (x, x1). Make the following assumption.

AssumpTION 1.

p(z) = p(Rz),
6c ©® ifandonlyif R6€ O.

For the purposes of Theorem 1 and its corollaries we will also make the
following assumption on the family of distributions {p(6, z)}.
ASSUMPTION 2.

(2.1)

(2:2) p(6,z) = C(6) exp (6iz1 + 6:22),

where

(2.3) C(6) = C(R9).

Note that S = Z?:ll z' is a sufficient statistic for 6 on the basis of the
observations z', 2%, - -+ , " .

The condition ( 2.3) is precisely what is required for (and results from)
p(6, z) = p(R6, Rz) and we could have alternatively formulated the re-
striction in that way. The condition (2.2) is not so limiting as it might at
first appear. By a suitable change of variables many distributions of the
exponential family can be put in the form (2.2). Also, except for a few
pathological examples, the assumption (2.2) is satisfied by any family
{p(6, x)} for which the sum vector s is a sufficient statistic for 6 [4].

We shall assume an a pr10r1 probability distribution G on E, for the
parameter 6. We define ¢(r; z, -, 2" to be the conditional prob-
ability density with respect to u of z glven ', ", (Statements
involving g here and in the remainder of the paper are valid only almost
everywhere with respect to an a.pproprlate measure ) In view of Assump-
tion 2 we will generally write g(z; 2, --- ,2"7) = q(x s, n — 1)

Let £" be a coordinate vector in E2 ; that is, " = €' forsome 4,7 = 1, 2,
where ¢ is the ¢th coordinate vector in Ej . E” is called the recording chowe
vector at the nth stage of the process and the value of 7 is called the recording
choice at the nth stage of the process.

Let R, , the sum of the recorded variables after n stages, be defined re-
cursively by
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(2.4) Rn = n—1 + sn'x”, RO = 07

where ““-”” denotes the usual dot product in E; .

Let w(x) be a real valued function called the payoff function associated
with the process.

We list formally the following assumption on w.

AssumpTION 3. w(z) is nondecreasing in .

An optimal policy (given certain information) for a process of N stages
is a policy of making recording choices which maximizes the (conditional)
expected value of w(Ry). The proof (using (2.5) and (2.6)) that an
optimal policy exists presents no special difficulties, and will not be given
here.

Let f(r, s, n) be the expected value of w(Ry) when using an optimal
policy given that R, = r and the sum vector s has been observed for the
first n stages. Of course, f also depends on w, N, p, and @ but these quanti-
ties are all fixed throughout a given process and need not be contained
explicitly in the notation.

Using the principle of optimality [1, p. 56] we may write the following
recursion relation:

f(r,s,n) = ma'x{fi(ry s,n)}, n=01--,N—1,
(2.5) e
f(r, s N) = w(r),

where
26) fi(r,s,n) = L fer +zi,s +2,n + 1)g(z, s,n) du(z).

Note that f; is the conditional expected payoff from a policy which
makes the recording choice 7 at the nth stage and uses an optimal policy
thereafter.

 The sampling choice made by any optimal policy for this process at
the nth stage is any one of the values 7 which maximize the integral on the
right of expression (2.6). We shall say that we have specified the complete
optimal policy if we know (as a function of r, s, and n) all the values of ¢
which maximize the integral on the right of (2.6).

3. Statement and proof of the optimal policy theorem. The main optimal
policy theorem is the following.

TrroreM 1. Suppose the family p(6, x), the measure p, and w satisfy
Assumptions 1-3 of §2. Assume G(6) = G(RO). Then s; > s; implies
f:("', S, n) 2 ff(T; S, ?’L), and 8 = 8§ i”lplies f,'(?‘, S, n) = ff(r’ s, n)’ Z,]
= 1, 2. Thus an optimal policy at the nth stage of the process is to make any
recording choice i for which s; 2 s;,j # 1.
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Proof. Define
(3.1) A(s,8) = exp {Z 0; 8:},

(32) L(s,n) = fE C™(0)A(s, 0) dG(0),

gi(r, S, n) = L(S, n)ff'(ry 8, n))

(3'3/) g(r, s,n) = max {gi(r, s,n)} = L(s, n)f(r, s, ).

Then from (2.2) the conditional density g satisfies

(3.4) L(s,n)q(z;s,n) = L(s +2,n + 1),

and from (2.5), (2.6), (3.3) and (3.4) we have
g(r,s, N) = L(s, N)w(r),

(35) g,-(r, S, n) = L(S’ n) [f(r + s 8 + zr, n + l)q(x, S, n) dﬂ(x)

= fgi(r 4+ 2,8 +z,n + 1) du(z).

We are now in a position to prove the following induction hypothesis
backward from n = N — 1: For s = (s1, s;) with s; > s, and any =
= (21, x2) and any r, we shall show that
Dn(ry S, 113) = gl(r) s+ =z, n) + gl(r, s+ Rx, n)

— go(r, 8 + x,m) — go(r, s + Ra,n) 2 0.
Note that substituting = (0, 0) in (3.5) shows the policy of the theorem

to be optimal at the nth stage.
We begin the induction by proving D = 0 forn = N — 1. In that case,

(3.6)

D, = fw(r + ylL(s + z+ y, N) + L(s + Rz + y, N)] du(y)

—fw(r+yz)[L(s+x+y,N)
+ L(s + Rz + y, N)1 du(y)
= fmm w(r + y)lL(s + = + 9, N) + L(s + Rz +y,N)
(3.7) — L(s +z + Ry, N) — L(s + Rz + Ry, N)] du(y)

+ [ wr + 9)L(s + o+ Ry, N) + L(s + Rz + Ry, N)
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— L(s+ 2+ y,N) — L(s + Rz + y, N)] du(y)
= [ WG+ =l +
Y1>v2

- [L(s+z+y N) + L(s + Re + y, N)
— L(s +z + Ry, N) — L(s + Rz + Ry, N)] du(y).
Using (3.2) we write
Lis+z+y,N)+ L(s+ Rz + y,N)
— L(s+x+ Ry,N) — L(s + Rz + Ry, N)
338) = Jose, CV(O)A(s + 2+ y,0) + A(s + = + y, Ro)
+ A(s + Rz + y,0) + A(s + Rz + y, R0)
— A(s +z + Ry,0) — A(s + = + Ry, Rf)
— A(s + Rz + Ry,0) — A(s + Rx + Ry, R0)] dG(6).

The last step of the proof for n = N — 1 is to show that the integrand
in (8.8) is positive. To begin this step we compute

d2

(39) da [A(s + (a, —a),0) + A(s + (a, —a), R6)]

= (6 — 6:)"[A(s + (g, —a),6) + A(s + (a, —a), RO)] 2 0

By Assumption 2, A(s, §) = A(Rs, R6). Hence A(s, ) + A(s, o) is
symmetric in s. This, together with (3.9) shows that for P = & + s, fixed,
A(s, 0) + A(s, Rf) is a convex function of |s; — s |. Examining the
arguments of the functions in the integrand of (3.8), we see that this con-
vexity implies the integrand is always positive. Returning from (3.8) to
(3.7) and using the fact that w is nondecreasing, we see that for n
= N — 1, D, = 0, which is the desired result, concluding the first half of
the induction.

To begin the second half of the proof we assume that D,y = 0 (for all
appropriate r, s, and ). We will then prove that D, = 0. As above, assume
81 > sy . Using the fact that

(3.10) fgl(r + 22,8 + 2, 1) du(z) = f go(r + y1, s + y, n) du(y),

we may write

91(7‘, S, n) - g2(7', S, n)

= [ @Otz stan+D) =6l o, s +a,n41)) dulz)
F 31
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g1y F @O +astant ) =gl a5 4o,n4 1) d@
=f (plr+a,s+z,n+1) —gu(r+m,s+2,n+1)) du(z)
pP1

+ f (r+z,s+z,n+1) — g(r +x2, s +2,n + 1)) du(x),
P2

wherepy = {z: 8+ 21 = 82 + 2}, p2 = {@: 2 € pi}, and p,’ = {2: Rz € pa}.
Hence,

D,(r,s,z) = qu(r, s + 2,n) — go(r, 8 + 2, 1)
+ qi(r, s + Rw,n) — gaor, s + R, n)

=fol(91(r+y1,s+x+y,n+1>
—g(r+y,s+z+yn+1))dy
+];é(g1(r+y1,s+:c+Ry,n+l)
(312) — g(r + 1,8+ 2+ Ry,n + 1)) du(y)
+ [ @+ s+ R yn+ D)
— g(r +wn,s+ Rz +y,n + 1)) du(y)
+ [ @+ oy s+ Ro+ Ry + D)

— go(r + 91,8 + Rz + Ry,n + 1)) du(y),

where @ = {y: s + o1 + 41 = 8 + 22 + ¥}, @ = {y: Ry ¢ @},
Q=1{y: s + 2+ = s+ z+ 9, @ ={y: Ry ¢ Qi
={y:8 + 2 + 92 < s + 21 + y1}. Note that Q," C @, and also Q; D Q..
Continuing from (3.12),

D, = [ Doa(r + 1, 8, + y) du(y)
+ [ Denalr + v1, 8,0 + RBy) du(y)
4

(3.13) +f;l_03 (ptr+wn,s+2z+yn+1)
- g2(1‘ + Y1, 8 +z+ y,n + 1)) dﬂ(y)
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+ ; o,(g1(r+y;,s+Rx+y,n+1)

—glr+wn,s+ Bz +y,n+ 1)) du(y).

Note that the integrand of the third integral is precisely $Dnii(r + v1,
s+ z + ¥, (0,0)) and so is nonnegative by the definition of @; and the
induction hypothesis. Similarly, the other integrands in (3.13) are non-
negative. Hence D, = 0. As remarked before, D,(r, s, (0, 0)) = 0 for all
n implies the policy of the theorem is optimal at every stage. The proof of
the theorem is thus completed.

4. Corollaries to the theorem. The first corollary gives a necessary con-
dition for the policy described in Theorem 1 to be the complete optimal
policy in the sense of the definition of §2.

COROLLARY 1. Assume p and u satisfy Assumptions 1 and 2 of §2 and
there exists a point x with x; ¥ . tn the range of u. Assume G(6) is sym-
metric and has a point of increase at some point 8 with 6, # 0, , and suppose
w(z) s strictly increasing in x. Finally, assume E(w(Ry)) < o« for the
optimal policy of Theorem 1. Then the policy of Theorem 1 s the complete
optimal policy.

Proof. The proof of this corollary is a minor modification of the proof
of the theorem.

The left-hand side of (3.9) is positive unless 6 = 6, . Using the hypothe-
sis of this corollary concerning @, the integral on the right of (3.8) is posi-
tive. Using the hypotheses concerning w and u, the integral on the right
of (3.7) is positive. Hence for n = N — 1, the sign “=" in the induction
hypothesis (3.6) may be replaced by the sign “>”. According to the
reasoning following (3.13), the sign “>” may be carried through the in-
duction step. Thus in (3.13), D, = 3Dny1 > 0. D, > O for all n implies
that the policy of the theorem is strictly better than any other policy.
This completes the proof of the corollary.

The second corollary of this section deals with what might be called a
first passage process. For this process the objective is to minimize an in-
creasing function of the stage n for which R, first becomes larger than some
fixed value R. We call this value of n, nz .

COROLLARY 2. Assume the hypotheses of Theorem 1 are satisfied. Assume
also that p(6, ) = 0 for all x with 21 < 0 or 2z, < 0. Then the policy of
Theorem 1 is optimal if it is desired to minimize E(f(n.)), where f(j) s
nondecreasing tinj = 1,2, -+ .

Proof. Let

(4.1) w(r) ={‘1) i P s
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Let P(n) be the probability that nz = n when using the policy P of the
theorem. Let P*(n) be this probability when using some other recording
policy, P*. We may assume ) _n—y P*(n) = 1, for otherwise nz = o with
positive probability for that policy and E(nz | P*) = o, so0 that the con-
clusion of the corollary is trivial. The policy of choosing at random among
the possible predictions satisfies Y w—y P*(n) = 1 (unless Pr {z = (0, 0)}
= 1), hence (except for this parenthetical case), policies giving such
values of P exist. .

We wish to show

(42) 3 i)Pm) £ 3 1) P
From Theorem 1 when w is given by (4.1),

(4.3) Z P(n) = Z P*(n) forany N < =.

Hence

S AP = 50 + 5 (6 + 1) = 50) (1- N0)
(44) < ) + 3 (G + 1) —f(lc))( _ 5 )

='§% f(n)P*(n),

which proves the corollary.
This corollary can be generalized somewhat using the same methods.
We shall not do this here.

b. Generalizations to m dimensions. It is very natural to consider a
generalization of the previous process for which z is an m-dimensional
vector (21, %3, -+, Tm) rather than a two-dimensional vector. The
generalization should be evident: at each stage of the process a recording
choice 7 is made, the objective being to maximize some function of the
sum of the recorded values after N stages. There is also a natural gen-
eralization of Assumptions 1 and 2. Wherever an R operator appears,
replace this by R:;;, 1 £ ¢ < j < m, where R;; induces a reversal of the
ith and jth coordinates of the vector it operates on. Also replace (2.2) by

(51) p(0,2) = C(9) o0 [3 2.

It seems reasonable to expect that the natural generalization of Theorem
1 is valid for this process, i.e., if G(8) is a symmetric a priori distribution
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for 6, then the optimal policy after the sum vector denoted by s has been
observed is to make the sampling choice 7 for which s; = s;,7 =1,2, -+,
m. I have not been able to prove this result in general. For certain special
cases, simple generalizations of the methods used in the preceding are
sufficient to prove the generalized form of Theorem 1. The notation used
in the following should be obvious. The optimal policy outlined in this
paragraph is optimal in the following two cases:

Case 1. If w(z) = =z.

In this case we write

fi(r,s,n) = r + fi(s,n)

(5.2) f (r+ @ + f(s + z,n + 1))g(z, 5, n) du(e)

r+Cm) + [ male, 5 m) du(a),

where C(s, n) depends only on s and n as indicated. It follows from a
straightforward consideration of a posteriori probabilities that s; > s;
implies

(5.3) fa:i q(z, s,n) du(z) = f z;q(, s, n) du(z),

which proves the generalization of Theorem 1 to be true for this special
m-dimensional case. (Actually, a generalization of (5.2) shows that any
process with a payoff function of the form w(z', - -+, 2") = 2.\ w(z®) is
essentially a one-stage decision process instead of a sequential decision
process. This fact was used in [6] to prove a special case of Theorem 1.)

Case 2. If p(6,z) = O forxz; # 0or1l,7=1,2,---, m (ie., if each
x; 18 a 0-1 random variable).

In this case s; > s; implies s; + z; = s; + z;, so that if s, > s,

91(7', S, n) - gz(", S, n)

= f(y(r+$1,s+x,n+l)—y(r+xz,s+x,n+1))dy(x)

(54) =ff(g(r+x1+y1,s+x+y,n+2)
—gr+z+ y,s+z+ y,n+ 2)) dulz) du(y)
=f(g1(7’+x1,s+a:,n+l)—gg(r+x1,s+a:,n+1))dy(x).

It can be proved as in Theorem 1 that s; > s, implies g:(r, s, N — 1)
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= g;(r,s, N — 1). Then (5.4) establishes this generalization of Theorem 1
by induction.
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